Al-Mg-Sc 合金与 LY12CZ 合金激光焊接工艺的研究

韩莉1,2, 姜伟2
(1. 济南科技大学机电工程学院表面技术研究所, 山东 青岛 266061; 2. 海军航空学院青岛分院航空机械系, 山东 青岛 266041)

【摘要】为改善 LY12CZ 合金焊接后的机械性能和抗氧化性能, 采用激光表面焊接技术对 Al-Mg-Sc 合金和 LY12CZ 进行对接焊。分析了金相组织、显微硬度、拉伸强度以及抗氧化性能, 实验结果表明: 采用激光焊接技术对 Al-Mg-Sc 合金和 LY12CZ 进行对接焊, 不仅可保证较高的强度, 还可以获得晶粒细小、硬度高于基体的强化层, 并且由于镁、钪合金元素的加入还可以提高铝合金的耐腐蚀性能。

【关键词】激光焊接; Al-Mg-Sc 合金; LY12CZ 合金
【中图分类号】TG456.7; 【文献标识码】A; 【文章编号】1001－3660(2008)04－0052－02

Study on the Laser Welding Process of Al-Mg-Sc Alloy and LY12CZ Alloy

HAN LI1,2, JIANG Wei2
(1. Surface Engineering Laboratory of College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; 2. Department of Aeronautical Engineering of Qingdao Branch of Naval Aeronautical Engineering Academy, Qingdao 266041, China)

【Abstract】Laser welding of Al-Mg-Sc alloy and LY12CZ has been studied in order to increase the strength properties and corrosion resistance. Microstructure, hardness, tensile strength and corrosion resistance have been analyzed. The experimental results show that using laser welding technology not only can weld alloys but also can get smaller grain size, strength and hardness are higher than the substrate, and the adding of Mg and Sc elements can also raise corrosion resistance of Al alloy.

【Key words】Laser welding; Al-Mg-Sc alloy; LY12CZ alloy

0 引言

铝合金的激光焊接是近几十年才发展起来的一项新技术[13]。与传统的铝合金焊接技术不同, 激光焊接具有良好的传输和聚焦特性, 经过聚焦镜组后可以将全部能量作用于最小的区域。因此, 激光焊接铝合金成为铝合金焊接的一种重要途径和手段, 并在国防科技方面有着很多成功应用的例子[13]。

本试验针对军用飞机的结构损伤修复现状以及沿海地区飞机所处的环境, 利用激光焊接技术对 LY12CZ 铝合金与 Al-Mg-Sc 合金进行对接焊, 对焊接工艺和焊接件各方面的性能进行了研究, 对于激光焊接工艺和铝合金的激光焊接技术作进一步的探讨, 为军用飞机的保养维护及修复提供技术参考。

1 试验方法

试验材料为 Al-Mg-Sc 合金和 LY12CZ 铝合金, 试样大小为 30mm × 100mm × 4mm。

1.2 金相组织及分析

图 1a、图 1b 分别为 Al-Mg-0.3Sc 合金与 LY12CZ 经过激光焊接后的宏观形貌和热影响区的微观形貌。可以看出, 图 1b 所示的热影响区形貌中晶粒区和镀钛区分布明显, 热影响区由于未发生熔化而被强化, 晶粒明显细化。
2.3 腐蚀测试

本试验中腐蚀时间为30d，每6天为一个周期更换新的腐蚀液，腐蚀液为新鲜海水，同时用电光天平测量质量并观察微观组织。第30天发现Al-Mg-Sc合金与LY12CZ激光对焊试样的质量基本未发生变化，而LY12CZ激光对焊试样出现了腐蚀坑。沿海区域机场的空气湿度以及酸碱环境比较接近海洋上空的大气环境，而本试验是将经激光焊接的试样一半浸泡在天然海水当中，一半暴露在大气中进行，经过激光对焊的Al-Mg-Sc合金与LY12CZ可以适应沿海地区的腐蚀环境。

3 结论

激光焊接是一种优良的焊接方式，除了快速成形以外，还可以细化处理区域的晶粒，从而提高焊缝的抗拉强度和硬度。镁和钪的加入可显著提高铝合金的机械性能及抗腐蚀性能。

在本试验中Al-Mg-0.3Sc与LY12CZ的激光焊接中，当速度为3mm/s，功率为570W时，硬度达到122.1HV0.01；Al-Mg-0.4Sc与LY12CZ的激光焊接中，当速度为2mm/s，功率为570W时，抗拉强度达到148MPa。

[参考文献]

[1] 戴达辉, 周克勤, 沈振海. 现代材料表面技术科学[M]. 北京:冶金工业出版社, 2004; 159-161


